18,028 research outputs found

    The Rise and Fall of Pentaquarks in Experiments

    Full text link
    Experimental evidence for and against the existence of pentaquarks has accumulated rapidly in the last three years. If they exist, they would be dramatic examples of hadronic states beyond our well-tested and successful particle models. The positive evidence suggests existence of baryonic objects with widths of at most a few MeV, some displaying exotic quantum numbers, such as baryons with strangeness S=+1S = +1. The non-observations of these states have often come from reaction channels very different from the positive evidence channels, making comparisons difficult. The situation has now been largely clarified, however, by high-statistics repetitions of the positive sightings, with the result that none of the positive sightings have been convincingly reproduced. The most recent unconfirmed positive sightings suffer again from low statistics and large backgrounds. It seems that a kind of ``bandwagon'' effect led to the overly-optimistic interpretation of numerous experiments in the earlier reports of exotic pentaquarks.Comment: Presented at Particles and Nuclei International Conference (PANIC'05), Santa Fe, N.M. October 28, 2005; 9 pages, 1 figur

    Strangeness Production Experiments at Jefferson Lab

    Full text link
    Experimental results for photo- and electro-production of open strangeness from the Thomas Jefferson National Accelerator Facility are discussed. The results are from work completed by mid-2003 on elementary KYKY production, nuclear targets, and the exotic Θ+\Theta^+ state. It is shown how the increases in intensity and precision of JLab experiments over earlier work have allowed new phenomena to become measurable.Comment: 14 pages, 10 figures, For proceedings of SENDAI03: Electrophoto-production of Strangeness on Nucleons and Nucle

    Quantum privacy and quantum coherence

    Full text link
    We derive a simple relation between a quantum channel's capacity to convey coherent (quantum) information and its usefulness for quantum cryptography.Comment: 6 pages RevTex; two short comments added 7 October 199

    Relation between shear parameter and Reynolds number in statistically stationary turbulent shear flows

    Full text link
    Studies of the relation between the shear parameter S^* and the Reynolds number Re are presented for a nearly homogeneous and statistically stationary turbulent shear flow. The parametric investigations are in line with a generalized perspective on the return to local isotropy in shear flows that was outlined recently [Schumacher, Sreenivasan and Yeung, Phys. Fluids, vol.15, 84 (2003)]. Therefore, two parameters, the constant shear rate S and the level of initial turbulent fluctuations as prescribed by an energy injection rate epsilon_{in}, are varied systematically. The investigations suggest that the shear parameter levels off for larger Reynolds numbers which is supported by dimensional arguments. It is found that the skewness of the transverse derivative shows a different decay behavior with respect to Reynolds number when the sequence of simulation runs follows different pathways across the two-parameter plane. The study can shed new light on different interpretations of the decay of odd order moments in high-Reynolds number experiments.Comment: 9 pages, 9 Postscript figure

    On statistically stationary homogeneous shear turbulence

    Full text link
    A statistically stationary turbulence with a mean shear gradient is realized in a flow driven by suitable body forces. The flow domain is periodic in downstream and spanwise directions and bounded by stress free surfaces in the normal direction. Except for small layers near the surfaces the flow is homogeneous. The fluctuations in turbulent energy are less violent than in the simulations using remeshing, but the anisotropy on small scales as measured by the skewness of derivatives is similar and decays weakly with increasing Reynolds number.Comment: 4 pages, 5 figures (Figs. 3 and 4 as external JPG-Files

    Information transmission through a noisy quantum channel

    Get PDF
    Noisy quantum channels may be used in many information-carrying applications. We show that different applications may result in different channel capacities. Upper bounds on several of these capacities are proved. These bounds are based on the coherent information, which plays a role in quantum information theory analogous to that played by the mutual information in classical information theory. Many new properties of the coherent information and entanglement fidelity are proved. Two nonclassical features of the coherent information are demonstrated: the failure of subadditivity, and the failure of the pipelining inequality. Both properties arise as a consequence of quantum entanglement, and give quantum information new features not found in classical information theory. The problem of a noisy quantum channel with a classical observer measuring the environment is introduced, and bounds on the corresponding channel capacity proved. These bounds are always greater than for the unobserved channel. We conclude with a summary of open problems

    Sub-Kolmogorov-Scale Fluctuations in Fluid Turbulence

    Full text link
    We relate the intermittent fluctuations of velocity gradients in turbulence to a whole range of local dissipation scales generalizing the picture of a single mean dissipation length. The statistical distribution of these local dissipation scales as a function of Reynolds number is determined in numerical simulations of forced homogeneous isotropic turbulence with a spectral resolution never applied before which exceeds the standard one by at least a factor of eight. The core of the scale distribution agrees well with a theoretical prediction. Increasing Reynolds number causes the generation of ever finer local dissipation scales. This is in line with a less steep decay of the large-wavenumber energy spectra in the dissipation range. The energy spectrum for the highest accessible Taylor microscale Reynolds number R_lambda=107 does not show a bottleneck.Comment: 8 pages, 5 figures (Figs. 1 and 3 in reduced quality
    • 

    corecore